10/22/2019 CS Matters in Maryland

(http://csmatters.org) 5 - 3

0b101 - Ob11

Sorting

Unit 5. Data Manipulation

-

Revision Date: Jul 22, 2019
Duration: 3 50-minute sessions

Lesson Summary

Summary

In this three-session lesson, students explore and confront the difficulties of the problem of
sorting data and the difficulties involved in expressing a clear and efficient algorithm for sorting.

Outcomes

« Students will be able to relate a real-world task such as sorting cards to sorting/organizing
information in a computer.

« Students will understand the problem of sorting and why it is nontrivial for large data sets.

» Students will be able to describe in pseudocode simple sorting algorithms (such as
bubblesort).

« Students will be able to reason about the correctness and efficiency of different sorting
algorithms, and will understand that the time required to sort a data set increases as the
size of the data set grows.

Overview
Session 1;

1. Getting Started (5 min) - Journal
2. Activity Card Sorting (40 min)

1. Explain the Problem [10 min]

2. Paired Activity: Algorithm Creation [30 min]
3. Wrap Up (5 min)

Session 2;

1. Getting Started (5 min) - Journal

2. Group Activity: Algorithm Evaluation (20 min)

3. Group Activity: Algorithm Selection and Justification (20 min)
4. Wrap Up (5 min)

Session 3:

csmatters.org/curriculum/lesson/preview/GZDXHn 1/9


http://csmatters.org/

10/22/2019 CS Matters in Maryland

1. Getting Started (10 min) - Journal and short discussion
2. Guided Activity: Algorithm Analysis (10 min)

3. Paired Activity: Algorithm Analysis (20 min)

4. Wrap Up (10 min)

Learning Objectives

CSP Obijectives

e« EU CRD-1 - Incorporating multiple perspectives through collaboration improves computing
innovations as they are developed.
o LO CRD-1.A - Explain how computing innovations are improved through
collaboration.
o LO CRD-1.C - Demonstrate effective interpersonal skills during collaboration.

* EU CRD-2 - Developers create and innovate using an iterative design process that is user-
focused, that incorporates implementation/feedback cycles, and that leaves ample room for
experimentation and risk-taking.

o LO CRD-2.E - Develop a program using a development process.

« EU AAP-2 - The way statements are sequenced and combined in a program determines
the computed result. Programs incorporate iteration and selection constructs to represent
repetition and make decisions to handle varied input values.

o LO AAP-2.L - Compare multiple algorithms to determine if they yield the same side
effect or result.

* EU AAP-4 - There exist problems that computers cannot solve, and even when a computer
can solve a problem, it may not be able to do so in a reasonable amount of time.
o LO AAP-4.A - For determining the efficiency of an algorithm: a. Explain the difference
between algorithms that run in reasonable time and those that do not. b. Identify
situations where a heuristic solution may be more appropriate.

Math Common Core Practice:

« MP2: Reason abstractly and quantitatively.
* MP4: Model with mathematics.
« MP8: Look for and express regularity in repeated reasoning.

Key Concepts

The algorithmic techniques and analysis involved in sorting data are seen in a wide variety of
contexts and applications. Sorting numbers in a list is challenging but foundational to many
algorithms in computer science.

Essential Questions

» How can computation be employed to facilitate exploration and discovery when working
with data?

csmatters.org/curriculum/lesson/preview/GZDXHn 2/9




10/22/2019 CS Matters in Maryland

« What considerations and trade-offs arise in the computational manipulation of data?

« Why are some languages better than others when used to implement algorithms?

« What kinds of problems are easy, what kinds are difficult, and what kinds are impossible to
solve algorithmically?

« How are algorithms evaluated?

+ Which mathematical and logical concepts are fundamental to computer programming?

What makes a "good" algorithm?

What should be taken into consideration when comparing algorithms that complete the same
task?

Teacher Resources

Student computer usage for this lesson is: optional

« You will need enough playing cards for every pair of students to have eight different cards.
Alternatively, you may make your own cards (e.g., using index cards) with different
numbers on them in place of playing cards.

« Handout - Sorting Algorithm Evaluation Student Worksheet.docx (in lesson folder)

« Video collection - https://www.youtube.com/user/AlgoRythmics/videos
(https://www.youtube.com/user/AlgoRythmics/videos)

o Note: If students do not have access to computers to individually watch the sorting
videos during the paired activity in Session 3, you could instead choose one of the
algorithms and show it to the class, having all pairs complete the algorithm
evaluation handout for that selected method.

Lesson Plan

Session 1

Getting Started (5 min)
Journal: Have students respond to the following questions:

« If you had 1 million books, and you had to be able to find any book by its title as fast as
possible, how would you organize them?

« How many books would you need to look at in the worst case scenario to find the title
before you have organized the books?

« How many books would you need to look at in the worst case scenario to find the title after
you have organized the books?

Teacher note: Having just finished the lessons on searching, students should recall that
searching an ordered list allows using the binary search which is faster than searching an
unordered list with a linear or random search.

csmatters.org/curriculum/lesson/preview/GZDXHn 3/9


https://www.youtube.com/user/AlgoRythmics/videos

10/22/2019 CS Matters in Maryland
Activity: Card Sorting (40 min)

Teacher note: The focus should be directed more toward the problem-solving technique than
nitpicking about the language used. Although students are writing instructions for a human to
manipulate a set of playing cards, they still need to be precise, because the assumption is that
the person doesn't know what they are doing. This problem is challenging and will require
creativity.

Explain the Problem [10 min]

« Demonstrate the card sorting sorting task as you explain.

« Clarify the goal: Today, you and a partner are going to design an algorithm and list the
instructions for a person to arrange a row of playing cards into order (from lowest to
highest value).

« Explain the basic rules:

o If a card is on the table, it must be face down.

o You can only see the value of a card by picking it up and looking at its face.

o You can only be holding and looking at two cards at a time (1 in each hand).

o You can compare the values of any of the cards you are holding in your hands and
determine if one is greater, less than, or equal to the other card.

o When you put a card down, try to be clear about where it should be put back down.
Cards should be put face down.

o You cannot use your memory of face-down cards to make decisions about them. You
should behave as though you have no recollection of cards that you aren't currently
holding.

o You will have eight cards to practice, but the procedure you follow should be general
enough to work for any number of cards.

« Ask the students whether there are any questions about the rules.

« Suggest that it could be helpful to break the task down into parts. Using abstraction and
collaboration can decrease the size and complexity of the task that each programmer has
to solve. Abstraction allows you to build upon existing processes, collaboration allows you
to break up the task once you agree on what the strategy is and what the separate tasks
are that need to be solved. Example, cards need to be comared and swapped, one person
could write the specific steps for how that should be done.

« Emphasize to students that there are *many* ways to achieve this task. Be creative. As a
class, they should try to come up with as many different ways of sorting as possible.

Paired Activity: Algorithm Creation [30 min]

« If there is an odd number of students, there could be one group of three students.

» Distribute the cards to student pairs. The cards can be ordinary playing cards, but each
pair should receive cards from the same suit that have been shuffled. Alternatively, you
can use handmade cards with arbitrary numbers on them. Before starting, have students
agree on the ordering of the cards (e.g., whether aces are high or low).

» Have students write their instruction list (algorithm) on a piece of paper.

« The format of the instruction lists is up to the students; they can create a numbered list, a
flow chart, a diagram with text and arrows, or other means of communication.

« Students should be working productively for the rest of the class: designing and writing their
card sorting algorithm.

csmatters.org/curriculum/lesson/preview/GZDXHn

4/9



10/22/2019 CS Matters in Maryland

« Circulate around the room to make sure that students are on task and that they understand
the rules and goals of the activity.

Wrap Up (5 min)
Journal:

« |If you were to give your algorithm a name that describes how it sorts, what would you name
it?
« |dentify the most difficult part of writing down the instructions for your algorithm.

Homework: Any pairs that did not finish the activity should complete it as a homework
assignment before the next session.

Session 2

In this session, students review the sorting algorithms they wrote in session 1. Students will follow
the algorithms created by their classmates and discover a variety of sorting strategies. By
analyzing the various algorithms, students will attempt to find the "best" sorting strategy.

Teacher note: There are two main difficulties in algorithm design to highlight: (1) It is very difficult
to be precise with language without some agreement about what terms mean. (2) Solving the
problem by determining the strategies and steps required to sort objects correctly, as well as
efficiently, presents a second level of difficulty.

Getting Started (5 min)

Journal: How do you think a sorting algorithm should be "measured"” to determine if it is the
"best"? Ask for ideas and discuss this during the group activity.

Group Activity: Algorithm Evaluation (20 min)

« Distribute the "Sorting Algorithm Evaluation Student Worksheet.doc" (in the lesson folder).

« Discuss: How will you determine which algorithm is better and why? How do you define
“better”? What criteria will you use?Give students an opportunity to respond individually
and collectively. Optionally, you may use a think-pair-share approach or small groups to
develop ideas and then share with the class. Solicit student ideas and try to agree of 4
criteria to write down on page 2 of the student worksheet.

1. Does it work correctly? (correctness)
2. Is it well written and easy to follow?
3. Is it efficient in terms of time? Is it efficient only under certain conditions?
4. Is it efficient in use of space? Do you need a lot of extra table room as temporary
places to arrange the cards in the process of sorting?
« Re-distribute playing cards to student pairs.
« Instruct students to follow directions on the Sorting Algorithm Evaluation worksheet and use
it to record their experiences.
« At the end of the session be sure to point out:
o An efficient algorithm for a problem can help solve larger instances of the problem.
o What looks more complex in code may actually be a more efficient solution.

csmatters.org/curriculum/lesson/preview/GZDXHn 5/9



10/22/2019 CS Matters in Maryland

o Different correct algorithms for the same problem can have different efficiencies.
o An advantage of doing this collaboratively is that it can decrease the size and
complexity of the task that each programmer has to solve.

Group Activity: Algorithm Selection and Justification (20 min)
Create groups of four by joining the pairs who previously exchanged algorithms.

Teacher note: This "swapping algorithm" activity works especially well when students exchange
algorithms with a group that has a fundamentally different approach. However, as a practical
matter, this can be hard to arrange. From your observations during Session 1, you might have a
sense of groups with different approaches that you can assign to swap algorithms.

« Groups should give feedback to each other about the algorithm, making sure to discuss:
o The algorithm's correctness - does it work; do you understand it; could you simulate
it or act it out?
o Explain confusing/ambiguous parts of the other group's algorithm in order to help
them write it better.
o Discuss which of the two algorithms is "better" and be able to explain why.
o Each group of 4 will nominate one of the two algorithms as the better one of the

group.

« Ask each group to volunteer the better algorithm at their table.
« Act out/simulate one group's instructions.

Teacher note: It is possible that the nominated algorithm won't work perfectly. If you encounter
any problems with the directions, give them the benefit of the doubt and simulate it as best you
can to enable the class to understand the intent.

« Ask if other groups solved the problem with a different strategy and demonstrate a few
groups' algorithms.

« Engage students in a discussion about which algorithm was the best. Why is it best? How
should algorithms be evaluated?

» Ask students to argue for one method or another and explain their reasons.

Teacher note: The students will perform an actual analysis in a later lesson, so it's okay at this
point to simply guide the discussion to see how students are thinking. They will re-examine these
ideas later.

« Point out to the students that the speed at which the actor can follow the algorithm is not a
measure of the algorithm, but rather the speed of the person. As an analogy, you might
compare a person's walking speed with the distance they have to travel. To compare
algorithms, you need to measure some "units of work". What those units are is debatable,
but must to be agreed upon. For card sorting, "work" could mean picking a card up, putting
it down, comparing with another card, etc.

Wrap Up (5 min)
Remind students of the two main issues in writing effective algorithms:

« The need for a clear, unambiguous language for expressing algorithmic solutions.
» Defining criteria for determining whether an algorithm is "good."

csmatters.org/curriculum/lesson/preview/GZDXHn

6/9



10/22/2019 CS Matters in Maryland
Homework: Assign students to write a final version of their algorithm, working out any
ambiguities or other problems revealed during the activities.
Session 3

In this session, we end the set of sorting activities by relating sorting to algorithms in the real
world. A further exploration of algorithm analysis with some new algorithms will sharpen their
intuition about what should and shouldn't be "counted" when analyzing algorithms, what is "hard"
for a computer to do, or what takes a "long time."

Getting Started (10 min)

Journal: discuss ideas and elements from the previous lesson:

What is "work" for a computer?

Why would the efficiency of an algorithm be measured in terms of both speed and amount

of "space" (memory) required?
Why does it matter how an algorithm (or program) will be used to decide if it is an
appropriate solution?

Teacher should clarify that in general, we want these things from an algorithm:

To provide a correct solution for any given input.
To use computational resources as efficiently as possible.

The suitability of a solution depends on how it will be used. Some sorting algorithms work
best in terms of time or memory used, others excel at particular situations like sorting a list

that is already mostly sorted but work poorly on lists that are badly out of order.

Guided Activity: Algorithm Analysis (10 min)

Go to the website that shows folk dancers simulating various sorting algorithms.
https://www.youtube.com/user/AlgoRythmics/videos
(https://www.youtube.com/user/AlgoRythmics/videos)

With the students, click on the bubble sort video, and complete Sorting Algorithm
Evaluation.docx for bubble sort, helping the students to identify when a "comparison" is
occurring and when a "swap" is occurring.

Play it again and help the students write the pseudocode for the bubble sort algorithm.
Compare the students' algorithms to solutions in C++
(https://mathbits.com/MathBits/CompSci/Arrays/Bubble.htm
(https://mathbits.com/MathBits/CompSci/Arrays/Bubble.htm)) and MatLab
(https://www.mathworks.com/matlabcentral/fileexchange/45125-sorting-
methods/content/Sorting%20Methods/bubblesort.m
(https://www.mathworks.com/matlabcentral/fileexchange/45125-sorting-

methods/content/Sorting%20Methods/bubblesort.m)). What features of the bubble sort are
identifiable regardless of language? Point out that the language may change the readability
of the solution, but that it can be done in any programming language because all provide

sequence, conditionals and iteration.

Paired Activity: Algorithm Analysis (20 min)

Assign each pair a different sorting algorithm.

csmatters.org/curriculum/lesson/preview/GZDXHn

7/9


https://www.youtube.com/user/AlgoRythmics/videos
https://mathbits.com/MathBits/CompSci/Arrays/Bubble.htm
https://www.mathworks.com/matlabcentral/fileexchange/45125-sorting-methods/content/Sorting%20Methods/bubblesort.m

10/22/2019

CS Matters in Maryland

Have each pair watch their assigned sorting video and complete the Sorting Algorithm
Evaluation for that method.

Have each group attempt to write pseudocode for their assigned sorting algorithm. Some
of the algorithms are quite complex, so emphasize to the students that the goal of this
exercise should be to think about what's happening, rather than to get it completely "right.”
Compare this algorithm to the one you developed.

What basic steps do the algorithms have in common? How can abstraction make it easier
to solve similar problems by building on existing solutions?

Wrap Up (10 min)

 Instruct students to discuss the following prompts with an elbow partner and then,

collaboratively write a response in their journals that incorporates the ideas of both
partners.

o What should and shouldn't be "counted" when analyzing algorithms?

o What is "hard" or time consuming for a computer to do?

o Why is the efficiency of algorithms important?
Assign homework for next lesson on comparing algorithms (Unit 5, Lesson 4): Identify
in your journal two places that you often travel between. Of the alternative routes available,
what do you consider to be the best route? Why? Are there circumstances in which an
alternate route is better? When is that the case?

Options for Differentiated Instruction

Suggestion: If you have a mix of new and advanced students, challenge the advanced students
to sort twice as many cards with a parallel processing algorithm of their own design. Each student
on the team can perform one action at the same time.

Evidence of Learning

Formative Assessment
Evaluation of algorithms

Convert actions into an algorithm

csmatters.org/curriculum/lesson/preview/GZDXHn

8/9



CS Matters in Maryland

10/22/2019

(http://www.umbc.edu/)

(http://www.nsf.gov/)

Authored by: CS Matters in Maryland

Website: csmatters.org (http://csmatters.org)

Email: csmattersinmaryland@gmail.com (mailto:csmattersinmaryland@gmail.com)
This work is licensed under a

Creative Commons Attribution-ShareAlike 3.0 United States License
(http://creativecommons.org/licenses/by-sa/3.0/us/)

by University of Maryland, Baltimore County (http://umbc.edu) and University of Maryland, College Park
(http://umd.edu).

csmatters.org/curriculum/lesson/preview/GZDXHn

9/9


http://www.umbc.edu/
http://www.umd.edu/
http://www.nsf.gov/
http://csmatters.org/
mailto:csmattersinmaryland@gmail.com
http://creativecommons.org/licenses/by-sa/3.0/us/
http://umbc.edu/
http://umd.edu/

